动态规划
# 5. 最长回文子串 - 力扣(LeetCode) (opens new window)
class Solution {
public String longestPalindrome(String s) {
int n = s.length();
int ans = 1; // 最长回文子串的长度,擂台
int leftIndex = 0, rightIndex = 0; // 最长回文子串的左,右位置
boolean[][] dp = new boolean[n][n]; // dp[i][j],i->j的串是否回文
// 初始化长度为1的回文子串
for (int i = 0;i < s.length(); i++) {
dp[i][i] = true;
}
// 初始化长度为2的回文子串
for (int i = 0; i + 1 < s.length(); i++) {
if (s.charAt(i) == s.charAt(i + 1)) {
dp[i][i + 1] = true;
if (ans < 2) {
ans = 2;
leftIndex = i;
rightIndex = i + 1;
}
}
}
// 遍历长度大于2的回文子串
for (int len = 3; len <= s.length(); len++) {
for (int left = 0; left < s.length(); left++) {
int right = left + len - 1;
if (right >= s.length()) break;
if (s.charAt(left) == s.charAt(right) && dp[left + 1][right -1]) {
dp[left][right] = true;
if (len > ans) {
ans = len;
leftIndex = left;
rightIndex = right;
}
}
}
}
return s.substring(leftIndex, rightIndex + 1);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# 53. 最大子数组和 - 力扣(LeetCode) (opens new window)
dp 数组的含义:以 nums[i] 为结尾的「最⼤⼦数组和」为 dp[i]
dp[i] 有两种「选择」,要么与前⾯的相邻⼦数组连接,形成⼀个和更⼤的⼦数组;要么不与前⾯的⼦数组连接,⾃成⼀派,⾃⼰作为⼀个⼦数组。
class Solution {
public int maxSubArray(int[] nums) {
int n = nums.length;
if (n == 0) return 0;
int[] dp = new int[n];
// base case
dp[0] = nums[0];
// 状态转移⽅程
for (int i = 1; i < n; i++) {
dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);
}
int res = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
编辑 (opens new window)
上次更新: 2025/06/13, 00:51:28